Percent Increase Formula:
From: | To: |
Percent increase over time calculates how a value grows when it's subject to compound percentage increases over multiple periods. This is commonly used in finance, economics, and population growth calculations.
The calculator uses the compound growth formula:
Where:
Explanation: The formula accounts for compounding, where each period's increase is applied to the previous period's total, not just the original amount.
Details: This calculation is essential for financial planning (investment growth), economic forecasting (price increases), demographic studies (population growth), and business projections (revenue growth).
Tips: Enter the original value, the percentage increase rate (as a positive number), and the number of periods. All values must be valid (positive numbers, periods ≥1).
Q1: How is this different from simple percentage increase?
A: Simple increase applies the percentage only to the original amount each time. Compound increase applies it to the growing total, resulting in faster growth.
Q2: What if the rate is negative?
A: The calculator accepts positive rates only. For decreases, use a separate percentage decrease calculator.
Q3: Can I use this for monthly calculations?
A: Yes, as long as the rate and periods use consistent time units (e.g., monthly rate with months as periods).
Q4: How accurate is this for long-term projections?
A: It assumes a constant growth rate, which may not reflect real-world variability over long periods.
Q5: Can this be used for inflation calculations?
A: Yes, it can show how prices increase over time with a constant inflation rate.